preprint
Inserted: 19 jan 2024
Year: 2017
Abstract:
We want to analyse both regularizing effect and long, short time decay
concerning parabolic Cauchy-Dirichlet problems of the type \begin{equation}
\begin{cases} \begin{array}{ll} ut-\text{div} (A(t,x)
\nabla u
{p-2}\nabla
u)=\gamma
\nabla u
q & \text{in}\,\,QT,\\ u=0
&\text{on}\,\,(0,T)\times\partial\Omega,\\ u(0,x)=u0(x) &\text{in}\,\, \Omega.
\end{array} \end{cases} \end{equation} We assume that $A(t,x)$ is a coercive,
bounded and measurable matrix, the growth rate $q$ of the gradient term is
superlinear but still subnatural, $\gamma>0$, the initial datum $u_0$ is an
unbounded function belonging to a well precise Lebesgue space
$L^\sigma(\Omega)$ for $\sigma=\sigma(q,p,N)$.