Calculus of Variations and Geometric Measure Theory

V. Julin - D. A. La Manna

Convergence of the volume preserving fractional mean curvature flow for convex sets

created by lamanna on 11 Jul 2023

[BibTeX]

preprint

Inserted: 11 jul 2023

Year: 2023

ArXiv: 2307.03912 PDF

Abstract:

We prove that the volume preserving fractional mean curvature flow starting from a convex set does not develop singularities along the flow. By the recent result of Cesaroni-Novaga \cite{CN} this then implies that the flow converges to a ball exponentially fast. In the proof we show that the apriori estimates due to Cinti-Sinestrari-Valdinoci \cite{CSV2} imply the $C^{1+\alpha}$-regularity of the flow and then provide a regularity argument which improves this into $C^{2+\alpha}$-regularity of the flow. The regularity step from $C^{1+\alpha}$ into $C^{2+\alpha}$ does not rely on convexity and can probably be adopted to more general setting.