Accepted Paper
Inserted: 1 may 2023
Last Updated: 27 nov 2024
Journal: Nonlinear Differential Equations and Applications
Year: 2023
Abstract:
We present extensions of rigidity estimates and of Korn's inequality to the setting of (mixed) variable exponents growth. The proof techniques, based on a classical covering argument, rely on the log-Hölder continuity of the exponent to get uniform regularity estimates on each cell of the cover, and on an extension result à la Nitsche in Sobolev spaces with variable exponents. As an application, by means of $\Gamma$-convergence we perform a passage from nonlinear to linearized elasticity under variable subquadratic energy growth far from the energy well.
Download: