Calculus of Variations and Geometric Measure Theory

G. Bevilacqua - A. Giorgini

Global Solutions for Two-Phase Complex Fluids with Quadratic Anchoring in Soft Matter Physics

created by bevilacqua on 15 Feb 2023
modified on 04 Sep 2024

[BibTeX]

Published Paper

Inserted: 15 feb 2023
Last Updated: 4 sep 2024

Journal: SIAM Journal on Mathematical Analysis
Volume: 56
Number: 5
Year: 2024
Doi: 10.1137/23M1608902

ArXiv: 2302.07196 PDF

Abstract:

We study a diffuse interface model describing the complex rheology and the interfacial dynamics during phase separation in a polar liquid-crystalline emulsion. More precisely, the physical systems comprises a two-phase mixture consisting in a polar liquid crystal immersed in a Newtonian fluid. Such composite material is a paradigmatic example of complex fluids arising in Soft Matter which exhibits multiscale interplay. Beyond the Ginzburg-Landau and Frank elastic energies for the concentration and the polarization, the free energy of the system is characterized by a quadratic anchoring term which tunes the orientation of the polarization at the interface. This leads to several quasi-linear nonlinear couplings in the resulting system describing the macroscopic dynamics. In this work, we establish the first mathematical results concerning the global dynamics of two-phase complex fluids with interfacial anchoring mechanism. First, we determine a set of sufficient conditions on the parameters of the system and the initial conditions which guarantee the existence of global weak solutions in two and three dimensions. Secondly, we show that weak solutions are unique and globally regular in the two dimensional case. Finally, we complement our analysis with some numerical simulations to display polarization and interfacial anchoring.