*Published Paper*

**Inserted:** 22 dec 2022

**Last Updated:** 25 sep 2023

**Journal:** Calculus of Variations and Partial Differential Equations

**Volume:** 62

**Number:** 7

**Year:** 2022

**Abstract:**

We show that the algebra of cylinder functions in the Wasserstein Sobolev space $H^{1,q}(\mathcal{P}_p(X,\mathsf{d}), W_{p, \mathsf{d}}, \mathfrak{m})$ generated by a finite and positive Borel measure $\mathfrak{m}$ on the $(p,\mathsf{d})$-Wasserstein space $(\mathcal{P}_p(X,\mathsf{d}), W_{p, \mathsf{d}})$ on a complete and separable metric space $(X,\mathsf{d})$ is dense in energy. As an application, we prove that, in case the underlying metric space is a separable Banach space $\mathbb{B}$, then the Wasserstein Sobolev space is reflexive (resp.~uniformly convex) if $\mathbb{B}$ is reflexive (resp.~if the dual of $\mathbb{B}$ is uniformly convex). Finally, we also provide sufficient conditions for the validity of Clarkson's type inequalities in the Wasserstein Sobolev space.

**Download:**