preprint
Inserted: 31 aug 2022
Last Updated: 11 sep 2022
Year: 2019
Abstract:
We study, in dimension $n\geq2$, the eigenvalue problem and the torsional rigidity for the $p$-Laplacian on convex sets with holes, with external Robin boundary conditions and internal Neumann boundary conditions. We prove that the annulus maximizes the first eigenvalue and minimizes the torsional rigidity when the measure and the external perimeter are fixed.