preprint
Inserted: 3 aug 2022
Year: 2022
Abstract:
We show that vector fields $b$ whose spatial derivative $D_xb$ satisfies a Orlicz summability condition have a spatially continuous representative and are well-posed. For the case of sub-exponential summability, their flows satisfy a Lusin (N) condition in a quantitative form, too. Furthermore, we prove that if $D_xb$ satisfies a suitable exponential summability condition then the flow associated to $b$ has Sobolev regularity, without assuming boundedness of ${\rm div}_xb$. We then apply these results to the representation and Sobolev regularity of weak solutions of the Cauchy problem for the transport and continuity equations.