Accepted Paper
Inserted: 27 apr 2022
Last Updated: 16 may 2023
Journal: J. Differ. Equ.
Year: 2022
Abstract:
In the class of admissible weak solutions, we prove a weak-strong uniqueness result for the incompressible Euler equations assuming that the symmetric part of the gradient belongs to $L^1_{\rm loc}([0,+\infty);L^{\exp}(\mathbb R^d;\mathbb R^{d\times d}))$, where $L^{\exp}$ denotes the Orlicz space of exponentially integrable functions. Moreover, under the same assumptions on the limit solution to the Euler system, we obtain the convergence of vanishing-viscosity Leray-Hopf weak solutions of the Navier-Stokes equations.
Keywords: Orlicz spaces, Euler equations, weak-strong uniqueness, inviscid limit
Download: