Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

A. Agrachev - L. Rizzi - T. Rossi

Relative heat content asymptotics for sub-Riemannian manifolds

created by rossi1 on 11 Oct 2021

[BibTeX]

Preprint

Inserted: 11 oct 2021

Pages: 44
Year: 2021

ArXiv: 2110.03926 PDF

Abstract:

The relative heat content associated with a subset Ω⊂M of a sub-Riemannian manifold, is defined as the total amount of heat contained in Ω at time t, with uniform initial condition on Ω, allowing the heat to flow outside the domain. In this work, we obtain a fourth-order asymptotic expansion in square root of t of the relative heat content associated with relatively compact non-characteristic domains. Compared to the classical heat content that we studied in Rizzi, Rossi - J. Math. Pur. Appl., 2021, several difficulties emerge due to the absence of Dirichlet conditions at the boundary of the domain. To overcome this lack of information, we combine a rough asymptotic for the temperature function at the boundary, coupled with stochastic completeness of the heat semi-group. Our technique applies to any (possibly rank-varying) sub-Riemannian manifold that is globally doubling and satisfies a global weak Poincaré inequality, including in particular sub-Riemannian structures on compact manifolds and Carnot groups.

Keywords: sub-Riemannian geometry, Asymptotic Analysis, Relative heat content

Credits | Cookie policy | HTML 5 | CSS 2.1