*Published Paper*

**Inserted:** 22 jan 2021

**Last Updated:** 27 sep 2022

**Journal:** Proc. Roy. Soc. Edinburgh Sect. A

**Volume:** 152

**Number:** 5

**Pages:** 1191-1232

**Year:** 2021

**Doi:** 10.1017/prm.2021.53

**Abstract:**

We prove the partial HÃ¶lder continuity for minimizers of quasiconvex functionals \[ \mathcal{F}({\bf u}) \colon =\int_{\Omega} f(x,{\bf u},D{\bf u})\,\mathrm{d}x, \] where $f$ satisfies a uniform VMO condition with respect to the $x$-variable and is continuous with respect to ${\bf u}$. The growth condition with respect to the gradient variable is assumed a general one.

**Keywords:**
Partial regularity, Morrey estimates, general growth, VMO condition

**Download:**