Published Paper
Inserted: 13 nov 2020
Last Updated: 27 nov 2024
Journal: Communications in Analysis and Geometry
Year: 2018
Abstract:
We show that if $\Sigma\subset \mathbb R^4$ is a closed, connected hypersurface with entropy $\lambda(\Sigma)\leq \lambda(\mathbb{S}^2\times \mathbb R)$, then the level set flow of $\Sigma$ never disconnects. We also obtain a sharp version of the forward clearing out lemma for non-fattening flows in $\mathbb R^4$ of low entropy.