Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

G. Antonelli - D. Di Donato - S. Don

Distributional solutions of Burgers' type equations for intrinsic graphs in Carnot groups of step 2

created by antonelli on 04 Aug 2020
modified on 30 Nov 2020


Submitted Paper

Inserted: 4 aug 2020
Last Updated: 30 nov 2020

Year: 2020

ArXiv: 2008.00519 PDF


We prove that in arbitrary Carnot groups $\mathbb G$ of step 2, with a splitting $\mathbb G=\mathbb W\cdot\mathbb L$ with $\mathbb L$ one-dimensional, the graph of a continuous function $\varphi\colon U\subseteq \mathbb W\to \mathbb L$ is $C^1_{\mathrm{H}}$-regular precisely when $\varphi$ satisfies, in the distributional sense, a Burgers' type system $D^{\varphi}\varphi=\omega$, with a continuous $\omega$. We stress that this equivalence does not hold already in the easiest step-3 Carnot group, namely the Engel group. As a tool for the proof we show that a continuous distributional solution $\varphi$ to a Burgers' type system $D^{\varphi}\varphi=\omega$, with $\omega$ continuous, is actually a broad solution to $D^{\varphi}\varphi=\omega$. As a by-product of independent interest we obtain that all the continuous distributional solutions to $D^{\varphi}\varphi=\omega$, with $\omega$ continuous, enjoy $1/2$-little H\"older regularity along vertical directions.

Tags: GeoMeG

Credits | Cookie policy | HTML 5 | CSS 2.1