*Book: SpringerBriefs on PDEs and Data Science*

**Inserted:** 9 jul 2020

**Last Updated:** 1 sep 2023

**Pages:** 121

**Year:** 2023

**Links:**
book page at Springer.com

**Abstract:**

We provide a general treatment of perturbations of a class of functionals modeled on convolution energies with integrable kernel which approximate the $p$-th norm of the gradient as the kernel is scaled by letting a small parameter $\varepsilon$ tend to $0$. We first provide the necessary functional-analytic tools to show coerciveness in $L^p$. The main result is a compactness and integral-representation theorem which shows that limits of convolution-type energies is a standard local integral functional with $p$-growth defined on a Sobolev space. This result is applied to obtain periodic homogenization results, to study applications to functionals defined on point-clouds, to stochastic homogenization and to the study of limits of the related gradient flows.