Published Paper
Inserted: 21 apr 2020
Last Updated: 4 jan 2022
Journal: Manuscripta Math.
Year: 2022
Doi: 10.1007/s00229-021-01350-2
Abstract:
We give an existence proof for variational solutions u associated to the total variation flow. Here, the functions being considered are defined on a metric measure space $(\mathcal{X},d,\mu)$ satisfying a doubling condition and supporting a Poincaré inequality. For such parabolic minimizers that coincide with a time-independent Cauchy-Dirichlet datum $u_0$ on the parabolic boundary of a space-time-cylinder $\Omega\times(0,T)$ with $\Omega\subset\mathcal{X}$ an open set and $T>0$, we prove existence in the weak parabolic function space $L^1_w(0,T;\mathrm{BV}(\Omega))$. In this paper, we generalize results from a previous work by Bögelein, Duzaar and Marcellini by introducing a more abstract notion for $\mathrm{BV}$-valued parabolic function spaces. We argue completely on a variational level.