Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

P. Lewintan - P. Neff

$L^p$-trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions

created by lewintan on 14 Apr 2020
modified on 13 Oct 2021

[BibTeX]

Published Paper

Inserted: 14 apr 2020
Last Updated: 13 oct 2021

Journal: Proceedings of the Royal Society of Edinburgh. Section A: Mathematics
Year: 2021
Doi: 10.1017/prm.2021.62

ArXiv: 2004.05981 PDF

Abstract:

For $1<p<\infty$ we prove an $L^p$-version of the generalized trace-free Korn inequality for incompatible tensor fields $P$ in $ W^{1,\,p}_0(\operatorname{Curl}; \Omega,\mathbb{R}^{3\times3})$. More precisely, let $\Omega\subset\mathbb{R}^3$ be a bounded Lipschitz domain. Then there exists a constant $c>0$ such that \[
P
_{L^p(\Omega,\mathbb{R}^{3\times3})}\leq c\,\left(
{\operatorname{dev} \operatorname{sym} P }
_{L^p(\Omega,\mathbb{R}^{3\times3})} +
{ \operatorname{dev} \operatorname{Curl} P }
_{L^p(\Omega,\mathbb{R}^{3\times3})}\right) \] holds for all tensor fields $P\in W^{1,\,p}_0(\operatorname{Curl}; \Omega,\mathbb{R}^{3\times3})$, i.e., for all $P\in W^{1,\,p}(\operatorname{Curl}; \Omega,\mathbb{R}^{3\times3})$ with vanishing tangential trace $ P\times \nu=0 $ on $ \partial\Omega$ where $\nu$ denotes the outward unit normal vector field to $\partial\Omega$ and $\operatorname{dev} P := P -\frac13 \operatorname{tr}(P)\,\mathbb{1}_3$ denotes the deviatoric (trace-free) part of $P$. We also show the norm equivalence \[
{ P }
_{L^p(\Omega,\mathbb{R}^{3\times3})}+
{\operatorname{Curl} P }
_{L^p(\Omega,\mathbb{R}^{3\times3})}\leq c\,\left(
{\operatorname{dev} \operatorname{sym} P }
_{L^p(\Omega,\mathbb{R}^{3\times3})} +
{ \operatorname{dev}\operatorname{Curl} P }
_{L^p(\Omega,\mathbb{R}^{3\times3})}\right) \] for tensor fields $P\in W^{1,\,p}_0(\operatorname{Curl}; \Omega,\mathbb{R}^{3\times3})$. These estimates also hold true for tensor fields with vanishing tangential trace only on a relatively open (non-empty) subset $\Gamma \subseteq \partial\Omega$ of the boundary.

Keywords: Korn's inequality, Lions lemma, incompatibility, gradient plasticity, dislocation density, Nečas estimate, Poincaré's inequality, Saint-Venant compatibility, trace-free Korn’s inequality, conformal mappings, conformal Killing vector field, Cosserat elasticity, incompatibility tensor

Credits | Cookie policy | HTML 5 | CSS 2.1