Published Paper
Inserted: 14 apr 2020
Last Updated: 13 oct 2021
Journal: Proceedings of the Royal Society of Edinburgh. Section A: Mathematics
Year: 2021
Doi: 10.1017/prm.2021.62
Abstract:
For $1<p<\infty$ we prove an $L^p$-version of the generalized trace-free Korn
inequality for incompatible tensor fields $P$ in $
W^{1,\,p}_0(\operatorname{Curl}; \Omega,\mathbb{R}^{3\times3})$. More
precisely, let $\Omega\subset\mathbb{R}^3$ be a bounded Lipschitz domain. Then
there exists a constant $c>0$ such that \[
P
_{L^p(\Omega,\mathbb{R}^{3\times3})}\leq c\,\left(
{\operatorname{dev}
\operatorname{sym} P }
_{L^p(\Omega,\mathbb{R}^{3\times3})} +
{
\operatorname{dev} \operatorname{Curl} P
}
_{L^p(\Omega,\mathbb{R}^{3\times3})}\right) \] holds for all tensor fields
$P\in W^{1,\,p}_0(\operatorname{Curl}; \Omega,\mathbb{R}^{3\times3})$, i.e.,
for all $P\in W^{1,\,p}(\operatorname{Curl}; \Omega,\mathbb{R}^{3\times3})$
with vanishing tangential trace $ P\times \nu=0 $ on $ \partial\Omega$ where
$\nu$ denotes the outward unit normal vector field to $\partial\Omega$ and
$\operatorname{dev} P := P -\frac13 \operatorname{tr}(P)\,\mathbb{1}_3$ denotes
the deviatoric (trace-free) part of $P$. We also show the norm equivalence \[
{ P }
_{L^p(\Omega,\mathbb{R}^{3\times3})}+
{\operatorname{Curl} P
}
_{L^p(\Omega,\mathbb{R}^{3\times3})}\leq c\,\left(
{\operatorname{dev}
\operatorname{sym} P }
_{L^p(\Omega,\mathbb{R}^{3\times3})} +
{
\operatorname{dev}\operatorname{Curl} P
}
_{L^p(\Omega,\mathbb{R}^{3\times3})}\right) \] for tensor fields $P\in
W^{1,\,p}_0(\operatorname{Curl}; \Omega,\mathbb{R}^{3\times3})$. These
estimates also hold true for tensor fields with vanishing tangential trace only
on a relatively open (non-empty) subset $\Gamma \subseteq \partial\Omega$ of
the boundary.
Keywords: Korn's inequality, Lions lemma, incompatibility, gradient plasticity, dislocation density, Nečas estimate, Poincaré's inequality, Saint-Venant compatibility, trace-free Korn’s inequality, conformal mappings, conformal Killing vector field, Cosserat elasticity, incompatibility tensor