Submitted Paper
Inserted: 24 jun 2019
Last Updated: 24 jun 2019
Year: 2019
Abstract:
In this paper we consider a class of non-uniformly elliptic integral functionals $\mathcal{F}$ and we prove the local boundedness of the quasi-minimizers of $\mathcal{F}$. As regards the integrand function $f$ defining $\mathcal{F}$, we require that
$$\lambda(x)\,
\xi
p\leq f(x,u,\xi)\leq \mu(x)\,(
\xi
p+
u
q)+a(x),
$$ where $\lambda,\mu,a$ are measurable functions satisfying suitable
integrability assumpions.
Our approach is based on a suitable adaptation of the celebrated De Giorgi proof, and it relies on an appropriate Caccioppoli-type inequality.
Keywords: local boundedness, Non-uniformly elliptic functionals, regularity of quasi-minimizers, Caccioppoli-type inequality
Download: