*Submitted Paper*

**Inserted:** 21 dec 2018

**Year:** 2018

**Abstract:**

We construct quasiconformal mappings $f\colon \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ for which there is a Borel set $E \subset \mathbb{R}^2 \times \{0\}$ of positive Lebesgue $2$-measure whose image $f(E)$ has Hausdorff $2$-measure zero. This gives a solution to the open problem of inverse absolute continuity of quasiconformal mappings on hypersurfaces, attributed to Gehring. By implication, our result also answers questions of Väisälä and Astala--Bonk--Heinonen.

**Tags:**
GeoMeG

**Keywords:**
quasiconformal mapping, absolute continuity