Calculus of Variations and Geometric Measure Theory

L. Ambrozio - R. Buzano - A. Carlotto - B. Sharp

Geometric convergence results for closed minimal surfaces via bubbling analysis

created by muller on 12 Jun 2018
modified on 13 Jun 2022


Published Paper

Inserted: 12 jun 2018
Last Updated: 13 jun 2022

Journal: Calculus of Variations and Partial Differential Equations
Volume: 61
Year: 2022
Doi: 10.1007/s00526-021-02135-x

ArXiv: 1803.04956 PDF


We present some geometric applications, of global character, of the bubbling analysis developed by Buzano and Sharp for closed minimal surfaces, obtaining smooth multiplicity one convergence results under upper bounds on the Morse index and suitable lower bounds on either the genus or the area. For instance, we show that given any Riemannian metric of positive scalar curvature on the three-dimensional sphere the class of embedded minimal surfaces of index one and genus $\gamma$ is sequentially compact for any $\gamma\geq 1$. Furthemore, we give a quantitative description of how the genus drops as a sequence of minimal surfaces converges smoothly, with mutiplicity $m\geq 1$, away from finitely many points where curvature concentration may happen. This result exploits a sharp estimate on the multiplicity of convergence in terms of the number of ends of the bubbles that appear in the process.