Published Paper
Inserted: 18 jul 2017
Last Updated: 2 jul 2019
Journal: SIAM Journal on Mathematical Analysis
Volume: 50
Number: 5
Pages: 5198-5242
Year: 2018
Abstract:
We study the stochastic homogenization for a Cauchy problem for a first-order Hamilton-Jacobi equation whose operator is not coercive w.r.t. the gradient variable. We look at Hamiltonians like $H(x,\sigma(x)p,\omega)$ where $\sigma(x)$ is a matrix associated to a Carnot group. The rescaling considered is consistent with the underlying Carnot group structure, thus anisotropic. We will prove that under suitable assumptions for the Hamiltonian, the solutions of the $\varepsilon$-problem converge to a deterministic function which can be characterized as the unique (viscosity) solution of a suitable deterministic Hamilton-Jacobi problem.
Keywords: Stochastic homogenisation, Carnot groups, non-coercive Hamiltonian
Download: