Accepted Paper
Inserted: 6 mar 2017
Last Updated: 18 apr 2018
Journal: Intern. Math. Res. Not.
Year: 2017
Abstract:
Motivated by Perelman's Pseudo Locality Theorem for the Ricci flow, we prove that if a Riemannian manifold has Ricci curvature bounded below in a metric ball which moreover has almost maximal volume, then in a smaller ball (in a quantified sense) it holds an almost-euclidean isoperimetric inequality.
The result is actually established in the more general framework of non-smooth spaces satisfying local Ricci curvature lower bounds in a synthetic sense via optimal transportation.
Download: