Published Paper
Inserted: 15 dec 2016
Last Updated: 4 sep 2020
Journal: Communications in Mathematical Sciences
Year: 2017
Abstract:
New fractional $r$-order seminorms, $TGV^r$, $r\in \mathbb{R}$, $r\geq 1$, are proposed in the one-dimensional (1D) setting, as a generalization of the integer order $TGV^k$-seminorms, $k\in\mathbb{N}$. The fractional $r$-order $TGV^r$-seminorms are shown to be intermediate between the integer order $TGV^k$-seminorms. A bilevel training scheme is proposed, where under a box constraint a simultaneous optimization with respect to parameters and order of derivation is performed. Existence of solutions to the bilevel training scheme is proved by $\Gamma$--convergence. Finally, the numerical landscape of the cost function associated to the bilevel training scheme is discussed for two numerical examples.
Download: