Published Paper
Inserted: 4 oct 2016
Last Updated: 19 aug 2024
Journal: Ann. Inst. H. Poincaré Anal. Non Linéaire
Year: 2017
Abstract:
We show that the support of any local minimizer of the interaction energy consists of isolated points whenever the interaction potential is of class $C^2$ and mildly repulsive at the origin; moreover, if the minimizer is global, then its support is finite. In addition, for some class of potentials we prove the validity of a uniform upper bound on the cardinal of the support of a global minimizer. Finally, in the one-dimensional case, we give quantitative bounds.
Download: