Published Paper
Inserted: 26 sep 2016
Last Updated: 19 aug 2024
Journal: J. Eur. Math. Soc. (JEMS)
Year: 2019
Abstract:
We prove a strong form of the quantitative Sobolev inequality in $\mathbb{R}^n$ for $p\geq 2$, where the deficit of a function $u\in \dot W^{1,p} $ controls $\
\nabla u -\nabla v\
_{L^p}$ for an extremal function $v$ in the Sobolev inequality.
Download: