Calculus of Variations and Geometric Measure Theory

L. Ambrosio - M. Colombo - A. Figalli

On the Lagrangian structure of transport equations: the Vlasov-Poisson system

created by colombom on 11 Dec 2014
modified by figalli on 19 May 2017


Accepted Paper

Inserted: 11 dec 2014
Last Updated: 19 may 2017

Journal: Duke Math. J.
Year: 2017


The Vlasov-Poisson system is an important non-linear transport equation, used to describe the evolution of particles under their self-consistent electric or gravitational field. The existence of classical solutions is limited to dimensions $d \leq 3$ under strong assumptions on the initial data, while weak solutions are known to exist under milder conditions. However, in the setting of weak solutions it is unclear whether the Eulerian description provided by the equation physically corresponds to a Lagrangian evolution of the particles. In this paper we develop several general tools concerning the Lagrangian structure of transport equations with non-smooth vector fields and we apply these results to show that weak and renormalized solutions of Vlasov-Poisson are Lagrangian, and actually that the concepts of renormalized and Lagrangian solutions are equivalent. As a corollary, we prove that finite energy solutions in dimension $d \leq 4$ are transported by a global flow (in particular, they preserve all the natural Casimir invariants), and we obtain global existence of weak solutions in any dimension under minimal assumptions on the initial data.

Tags: GeMeThNES
Keywords: Renormalized solutions, Transport equations, Vlasov-Poisson system, Lagrangian flows