Published Paper
Inserted: 2 dec 2013
Last Updated: 14 aug 2024
Journal: Discrete Contin. Dyn. Syst.
Year: 2014
Abstract:
We consider a family of degenerate elliptic equations of the form ${\rm div} (\nabla F(\nabla u)) = f$, where $F\in C^{1,1}$ is a convex function which is elliptic outside a ball. We prove an excess-decay estimate at points where $\nabla u$ is close to a nondegenerate value for $F$. This result applies to degenerate equations arising in traffic congestion, where we obtain continuity of $\nabla u$ outside the degeneracy, and to anisotropic versions of the $p$-laplacian, where we get Hölder regularity of $\nabla u$.
Download: