*Lecture Notes*

**Inserted:** 16 mar 2012

**Last Updated:** 16 mar 2012

**Journal:** Quaderni del Dipartimento di Matematica dell'Università del Salento

**Volume:** 1

**Pages:** 1-92

**Year:** 1984

**Links:**
journal site (full PDF available)

**Abstract:**

This work is intended as an introduction to the regularity theory of oriented boundaries in $\mathbb R^n$ which are almost minimal for the area functional. It is based partly on an earlier manuscript which contained the proof of the main theorem presented below, and partly on lecture notes for a course by the author at the University of Lecce.

The reader is presumed to have some knowledge of the basic facts concerning Caccioppoli sets: sections 2.1 to 2.4 of the book of Massari and Miranda (see [27] of the bibliography at the end of the volume) will serve the scope.

With the exception of a few "classical" inequalities, which proofs can also be found in [27], the exposition is essentially self-contained.