Calculus of Variations and Geometric Measure Theory

V. Nesi - M. Palombaro - M. Ponsiglione

Gradient integrability and rigidity results for two-phase conductivities in dimension two

created by ponsiglio on 28 Dec 2011
modified on 25 Jan 2012

[BibTeX]

Preprint

Inserted: 28 dec 2011
Last Updated: 25 jan 2012

Year: 2011

Abstract:

This paper deals with higher gradient integrability for $\sigma$-harmonic functions $u$ with discontinuous coefficients $\sigma$, i.e. weak solutions of $\mbox{div }(\sigma \nabla u) = 0$. We focus on two-phase conductivities $\sigma:\Omega\subset\mathbb R^2\mapsto \{\sigma_1,\sigma_2\}\subset M^{2\times 2}$, and study the higher integrability of the corresponding gradient field $
\nabla u
$. The gradient field and its integrability clearly depend on the geometry, i.e., on the phases arrangement described by the sets $E_i=\sigma^{-1}(\sigma_i)$. We find the optimal integrability exponent of the gradient field corresponding to any pair $\{\sigma_1,\sigma_2\}$ of positive definite matrices, i.e., the worst among all possible microgeometries. We also show that it is attained by so-called exact solutions of the corresponding PDE. Furthermore, among all two-phase conductivities with fixed ellipticity, we characterize those that correspond to the worse integrability.


Download: