Published Paper
Inserted: 15 oct 2009
Last Updated: 2 dec 2013
Journal: J. Math. Anal. Appl.
Volume: 344
Number: 2
Year: 2008
Abstract:
We prove regularity results for minimizers of functionals
$\cF(u,\Omega) := \int_\Omega f(x,u,Du)\, dx$ in the class $K := \{
u \in W^{1,p(x)}(\Omega,\R): u \ge \psi\}$, where $\psi:\Omega \to
\R$ is a fixed function and $f$ is quasiconvex and fulfills a growth
condition of the type
$$
L{-1}
z
{p(x)} \le f(x,\xi,z) \le L(1+
z
{p(x)}),
$$
with growth exponent $p:\Omega \to (1,\infty)$.
Keywords: Non standard growth conditions, obstacle problems
Download: