*Published Paper*

**Inserted:** 17 dec 2001

**Last Updated:** 31 oct 2002

**Journal:** Set-Valued Anal.

**Volume:** 10

**Pages:** 165-183

**Year:** 2002

**Abstract:**

Linearized elastic energies are derived from rescaled non-linear energies by means of $\Gamma\mbox{-convergence}$. For Dirichlet and mixed boundary value problems in a Lipschitz domain $\Omega$, the convergence of minimizers takes place in the weak topology of $H^1(\Omega,*R*^n)$ and in the strong topology of $W^{1,q}(\Omega,*R*^n)$ for $1\leq q <2$.

**Keywords:**
Gamma-convergence, linearized elasticity

**Download:**