Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

A formal Riemannian structure on the space of conformal metrics and some applications.

Matthew Gursky

created by malchiodi on 06 May 2016

18 may 2016 -- 16:00   [open in google calendar]

Scuola Normale Superiore, Aula Tonelli

Abstract.

In this talk I will present some results from project with J. Streets (UC-Irvine), in which we define a formal Riemannian metric on the set of metrics in a conformal class with positive (or negative) curvature. In the case of surfaces, this metric has many interesting formal properties; for example the curvature is nonpositive and the Liouville energy is geodesically convex. I will then talk about extensions to higher dimensions, especially 4-d, in which this construction has some interesting applications to the fully nonlinear Yamabe problem.

Credits | Cookie policy | HTML 5 | CSS 2.1