Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

Boundary behavior and geometric properties of nonlocal minimal surfaces

Serena Dipierro

created by gelli on 17 Jan 2016

23 mar 2016 -- 17:00   [open in google calendar]

Sala Seminari Dipartimento di Matematica di Pisa

Abstract.

We recall the notion of nonlocal minimal surfaces and we discuss their qualitative and quantitative interior and and boundary behavior. In particular, we present some optimal examples in which the surfaces stick at the boundary. This phenomenon is purely nonlocal, since classical minimal surfaces do not stick at the boundary of convex domains. We also discuss the graph properties of the nonlocal minimal surfaces.

Credits | Cookie policy | HTML 5 | CSS 2.1