# Filling multiples of embedded curves

##
Robert Young
(Courant Institute, New York)

created by magnani on 30 May 2015

10 jun 2015
-- 17:30
[open in google calendar]

Sala Seminari (Dipartimento di Matematica, Università di Pisa)

**Abstract.**

Filling a curve with an oriented surface can sometimes be "cheaper by the dozen". For example, L. C. Young constructed a smooth curve drawn on a projective plane in Rn which is only about 1.5 times as hard to fill twice as it is to fill once and asked whether this ratio can be bounded below. We will use methods from geometric measure theory to answer this question and pose some open questions about systolic inequalities for surfaces embedded in Rn.