Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

G. Savaré

Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in RCD(K,\infty) metric measure spaces

created by savare on 24 Feb 2021

[BibTeX]

preprint

Inserted: 24 feb 2021

Year: 2013

ArXiv: 1304.0643 PDF

Abstract:

We prove that the linear heat flow in a RCD(K,\infty) metric measure space (X,d,m) satisfies a contraction property with respect to every Lp-Kantorovich-Rubinstein-Wasserstein distance. In particular, we obtain a precise estimate for the optimal W\infty-coupling between two fundamental solutions in terms of the distance of the initial points. The result is a consequence of the equivalence between the RCD(K,\infty) lower Ricci bound and the corresponding Bakry-\'Emery condition for the canonical Cheeger-Dirichlet form in (X,d,m). The crucial tool is the extension to the non-smooth metric measure setting of the Bakry's argument, that allows to improve the commutation estimates between the Markov semigroup and the Carr\'e du Champ associated to the Dirichlet form. This extension is based on a new a priori estimate and a capacitary argument for regular and tight Dirichlet forms that are of independent interest.

Credits | Cookie policy | HTML 5 | CSS 2.1