Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

J. Lira - R. Mazzeo - A. Pluda - M. Saez

Short-time existence for the network flow

created by pluda on 12 Jan 2021



Inserted: 12 jan 2021
Last Updated: 12 jan 2021

Year: 2021


This paper contains a new proof of the short-time existence for the flow by curvature of a network of curves in the plane. Appearing initially in metallurgy and as a model for the evolution of grain boundaries, this flow was later treated by Brakke using varifold methods. There is good reason to treat this problem by a direct PDE approach, but doing so requires one to deal with the singular nature of the PDE at the vertices of the network. This was handled in cases of increasing generality by Bronsard-Reitich (ARMA '93), Mantegazza-Novaga-Tortorelli (Annali SNS '04) and eventually, in the most general case of irregular networks by Ilmanen-Neves-Schulze (JDG '19). Although the present paper proves a result similar to the one by Ilmanen-Neves-Schulze, the method here provides substantially more detailed information about how an irregular network `resolves' into a regular one. Either approach relies on the existence of self-similar expanding solutions found in a paper by the second and fourth authors. As a precursor to and illustration of the main theorem, we also prove an unexpected regularity result for the mixed Cauchy-Dirichlet boundary problem for the linear heat equation on a manifold with boundary.


Credits | Cookie policy | HTML 5 | CSS 2.1