Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

E. Bonetti - C. Cavaterra - F. Freddi - F. Riva

On a phase field model of damage for hybrid laminates with cohesive interface

created by riva on 16 Jul 2020
modified on 20 Jul 2020


Submitted Paper

Inserted: 16 jul 2020
Last Updated: 20 jul 2020

Year: 2020

ArXiv: 2007.08321 PDF


In this paper we investigate a rate--independent model for hybrid laminates described by a damage phase--field approach on two layers coupled with a cohesive law governing the behaviour of their interface. For the analysis we adopt the notion of energetic evolution, based on global minimisation of the involved energy. Due to the presence of the cohesive zone, as already emerged in literature, compactness mathematical issues lead to the introduction of a fictitious variable replacing the physical one which represents the maximal opening of the interface displacement discontinuity reached during the evolution. A new strategy which allows to recover the equivalence between the fictitious and the real variable under general loading--unloading regimes is illustrated. The argument is based on temporal regularity of energetic evolutions. This regularity is achieved by means of a careful balance between the convexity of the elastic energy of the layers and the natural concavity of the cohesive energy of the interface.

Keywords: Damage phase--field model, Cohesive interface, Energetic evolutions, Temporal regularity


Credits | Cookie policy | HTML 5 | CSS 2.1