Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

G. Floridia - Z. Li - M. Yamamoto

Well-posedness for the backward problems in time for general time-fractional diffusion equation

created by floridia on 27 Jun 2020



Inserted: 27 jun 2020

Year: 2020

ArXiv: 2001.09444v2 PDF


In this article, we consider a partial differential equation with Caputo time-derivative: $\partial_t^\alpha u + Au = F$ where $0< \alpha < 1$ and $u$ satisfies the zero Dirichlet boundary condition. For a non-symmetric elliptic operator $-A$ of the second order and given $F$, we prove the well-posedness for the backward problem in time and our result generalizes the existing results assuming that $A$ is symmetric. The key is the perturbation argument and the completeness of the generalized eigenfunctions of the elliptic operator $A$.

Credits | Cookie policy | HTML 5 | CSS 2.1