Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

F. Santambrogio

Lecture notes on Variational Mean Field Games

created by santambro on 20 Apr 2020
modified on 22 Jul 2020

[BibTeX]

Preprint

Inserted: 20 apr 2020
Last Updated: 22 jul 2020

Year: 2020
Notes:

The pdf file of these notes is not publicly available, according to a request of the editor. Please contact the author in case you are interested.


Abstract:

These lecture notes aim at giving the details presented in the short course (6h) given in Cetraro, in the CIME School about MFG of June 2019. The topics which are covered concern first-order MFG with local couplings, and the main goal is to prove that minimizers of a suitably expressed global energy are equilibria in the sense that a.e. trajectory solves a control problem with a running cost depending on the density of all the agents. Both the case of a cost penalizing high densities and of an $L^\infty$ constraint on the same densities are considered. The details of a construction to prove that minimizers actually define equilibria are presented under a boundedness assumption of the running cost, which is proven in the relevant cases.

Credits | Cookie policy | HTML 5 | CSS 2.1