Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

D. Mucci - A. Saracco

The total intrinsic curvature of curves in Riemannian surfaces

created by mucci on 26 Jun 2019
modified on 02 Jun 2020

[BibTeX]

Published Paper

Inserted: 26 jun 2019
Last Updated: 2 jun 2020

Journal: Rend. Circ. Mat. Palermo, II Ser.
Year: 2020
Doi: https://doi.org/10.1007/s12215-020-00516-3
Notes:

Published online: 16 May 2020


Abstract:

We deal with irregular curves contained in smooth, closed, and compact surfaces. For curves with finite total intrinsic curvature, a weak notion of parallel transport of tangent vector fields is well-defined in the Sobolev setting. Also, the angle of the parallel transport is a function with bounded variation, and its total variation is equal to an energy functional that depends on the "tangential" component of the derivative of the tantrix of the curve. We show that the total intrinsic curvature of irregular curves agrees with such an energy functional. By exploiting isometric embeddings, the previous results are then extended to irregular curves contained in Riemannian surfaces. Finally, the relationship with the notion of displacement of a smooth curve is analyzed.

Keywords: geodesic curvature; Riemannian surfaces; parallel transport; non-smooth curves


Download:

Credits | Cookie policy | HTML 5 | CSS 2.1