*Submitted Paper*

**Inserted:** 10 jan 2019

**Last Updated:** 10 jan 2019

**Year:** 2019

**Abstract:**

We deal with a notion of weak binormal and weak principal normal for non-smooth curves of the Euclidean space with finite total curvature and total absolute torsion. By means of piecewise linear methods, we first introduce the analogous notation for polygonal curves, where the polarity property is exploited, and then make use of a density argument. Both our weak binormal and normal are rectifiable curves which naturally live in the projective plane. In particular, the length of the weak binormal agrees with the total absolute torsion of the given curve. Moreover, the weak normal is the vector product of suitable parameterizations of the tangent indicatrix and of the weak binormal. In the case of smooth curves with positive curvature, the weak binormal and normal yield (up to a lifting) the classical notions of binormal and normal.

**Download:**