Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

A. Marchese - A. Massaccesi - S. Stuvard - R. Tione

A multi-material transport problem with arbitrary marginals

created by marchese on 27 Jul 2018
modified by stuvard on 10 Oct 2018



Inserted: 27 jul 2018
Last Updated: 10 oct 2018

Pages: 22
Year: 2018

ArXiv: 1807.10969 PDF


In this paper we study general transportation problems in $\mathbb{R}^n$, in which $m$ different goods are moved simultaneously. The initial and final positions of the goods are represented by measures $\mu^-$, $\mu^+$ on $\mathbb{R}^n$ with values in $\mathbb{R}^m$. When the measures are finite atomic, a discrete transportation network is a measure $T$ on $\mathbb{R}^n$ with values in $\mathbb{R}^{n\times m}$ represented by an oriented graph $\mathcal{G}$ in $\mathbb{R}^n$ whose edges carry multiplicities in $\mathbb{R}^m$. The constraint is encoded in the relation ${\rm div}(T)=\mu^--\mu^+$. The cost of the discrete transportation $T$ is obtained integrating on $\mathcal{G}$ a general function $\mathcal{C}:\mathbb{R}^m\to\mathbb{R}$ of the multiplicity. When the initial data $\left( \mu^-,\mu^+\right)$ are arbitrary (possibly diffuse), the cost of a transportation network between them is computed by relaxation of the functional on graphs mentioned above. Our main result establishes the existence of cost-minimizing transportation networks for arbitrary data $\left( \mu^-,\mu^+\right)$. Furthermore, under additional assumptions on the cost integrand $\mathcal{C}$, we prove the existence of transportation networks with finite cost and the stability of the minimizers with respect to variations of the given data.

Keywords: transportation network, branched transportation, Multi-material transport problem, Normal current


Credits | Cookie policy | HTML 5 | CSS 2.1