*Preprint*

**Inserted:** 5 jul 2018

**Year:** 2018

**Abstract:**

We investigate the Edge-Isoperimetric Problem (EIP) for sets with $n$ elements of the cubic lattice by emphasizing its relation with the emergence of the Wulff shape in the crystallization problem. Minimizers $M_n$ of the edge perimeter are shown to deviate from a corresponding cubic Wulff configuration with respect to their symmetric difference by at most $O(n^{3/4})$ elements. The exponent $3/4$ is optimal. This extends to the cubic lattice analogous results that have already been established for the triangular, the hexagonal, and the square lattice in two space dimensions.