Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

F. Cavalletti - A. Mondino

New formulas for the Laplacian of distance functions and applications

created by cavallett on 26 Mar 2018



Inserted: 26 mar 2018
Last Updated: 26 mar 2018

Year: 2018


The goal of the paper is to prove an exact representation formula for the Laplacian of the distance (and more generally for an arbitrary 1-Lipschitz function) in the framework of metric measure spaces satisfying Ricci curvature lower bounds in a synthetic sense (more precisely in essentially non-branching MCP(K,N)-spaces). Such a representation formula makes apparent the classical upper bounds and also some new lower bounds, together with a precise description of the singular part. The exact representation formula for the Laplacian of 1-Lipschitz functions (in particular for distance functions) holds also (and seems new) in a general complete Riemannian manifold. We apply these results to prove the equivalence of CD(K, N ) and a dimensional Bochner inequality on signed distance functions. Moreover we obtain a measure-theoretic Splitting Theorem for infinitesimally Hilbertian, essentially non-branching spaces verifying MCP(0,N).


Credits | Cookie policy | HTML 5 | CSS 2.1