*Accepted Paper*

**Inserted:** 21 feb 2018

**Last Updated:** 17 jul 2018

**Journal:** To appear in the Matrix Annals

**Year:** 2018

**Abstract:**

This short note is the announcement of a forthcoming work in which we prove a first general boundary regularity result for area-minimizing currents in higher codimension, without any geometric assumption on the boundary, except that it is an embedded submanifold of a Riemannian manifold, with a mild amount of smoothness ($C^{3, a_0}$ for a positive $a_0$ suffices). Our theorem allows to answer a question posed by Almgren at the end of his Big Regularity Paper. In this note we discuss the ideas of the proof and we also announce a theorem which shows that the boundary regularity is in general weaker that the interior regularity. Moreover we remark an interesting elementary byproduct on boundary monotonicity formulae.

**Download:**