Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

F. Cavalletti - A. Mondino

Almost euclidean Isoperimetric Inequalities in spaces satisfying local Ricci curvature lower bounds

created by mondino on 06 Mar 2017

[BibTeX]


Inserted: 6 mar 2017
Last Updated: 6 mar 2017

Year: 2017

Abstract:

Motivated by Perelman's Pseudo Locality Theorem for the Ricci flow, we prove that if a Riemannian manifold has Ricci curvature bounded below in a metric ball which moreover has almost maximal volume, then in a smaller ball (in a quantified sense) it holds an almost-euclidean isoperimetric inequality.

The result is actually established in the more general framework of non-smooth spaces satisfying local Ricci curvature lower bounds in a synthetic sense via optimal transportation.


Download:

Credits | Cookie policy | HTML 5 | CSS 2.1