Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

A. Henrot - I. Lucardesi - G. Philippin

On two functionals involving the maximum of the torsion function

created by lucardesi on 02 Feb 2017
modified on 20 Nov 2017

[BibTeX]

Accepted Paper

Inserted: 2 feb 2017
Last Updated: 20 nov 2017

Journal: ESAIM: COCV
Year: 2017
Doi: https://doi.org/10.1051/cocv/2017069

Abstract:

In this paper we investigate upper and lower bounds of two shape functionals involving the maximum of the torsion function. More precisely, we consider $T(\Omega)/(M(\Omega)
\Omega
)$ and $M(\Omega)\lambda_1(\Omega)$, where $\Omega$ is a bounded open set of $\mathbb R^d$ with finite Lebesgue measure $
\Omega
$, $M(\Omega)$ denotes the maximum of the torsion function, $T(\Omega)$ the torsion, and $\lambda_1(\Omega)$ the first Dirichlet eigenvalue. Particular attention is devoted to the subclass of convex sets.


Download:

Credits | Cookie policy | HTML 5 | CSS 2.1