Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

P. Castillon - B. Ruffini

A spectral characterization of geodesic balls in non-compact rank one symmetric spaces

created by ruffini on 24 Oct 2016
modified on 27 Mar 2017


Submitted Paper

Inserted: 24 oct 2016
Last Updated: 27 mar 2017

Year: 2016


In constant curvatures spaces, there are a lot of characterizations of geodesic balls as optimal domain for shape optimization problems. Although it is natural to expect similar characterizations in rank one symmetric spaces, very few is known in this setting. In this paper we prove that, in a non-compact rank one symmetric space, the geodesic balls uniquely maximize the rst Steklov eigenvalue among the domains of xed volume, extending to this context a result of Brock in the Euclidean space. Then we show that a stability version of the ensuing Brock-Weinstock inequality holds. The idea behind the proof is to exploit a suitable weighted isoperimetric inequality which we prove to hold true, as well as in a stability form, on harmonic manifolds. Eventually we show that, in general, the geodesic balls are not global maximizers on the standard sphere.


Credits | Cookie policy | HTML 4.0.1 strict | CSS 2.1