*Illinois Journal of Math. *

**Inserted:** 15 jul 2016

**Last Updated:** 19 jul 2017

**Year:** 2016

**Abstract:**

A set is porous if each point sees relatively large holes in the set on arbitrarily small scales. We show that sets porous with respect to the Carnot-Carath\'eodory distance are much smaller than measure zero sets and are not comparable with sets porous with respect to the Euclidean distance. We construct a Lipschitz function which is Pansu differentiable at no point of a given sigma-porous set and show preimages of open sets under the horizontal gradient are far from being porous.

**Download:**