*Published Paper*

**Inserted:** 22 feb 2012

**Last Updated:** 5 mar 2012

**Journal:** Adv. Calc. Var.

**Volume:** 1

**Number:** 3

**Pages:** 241-270

**Year:** 2008

**Links:**
Link to the published version

**Abstract:**

We study autonomous integrals \[F[u]:=\int_\Omega f(Du)\,{\rm d}x \qquad\text{for }u\colon\mathbb{R}^n\supset\Omega\to\mathbb{R}^N\] in the multidimensional calculus of variations, where the integrand $f$ is a strictly quasiconvex function satisfying the $(p,q)$-growth conditions \[\gamma\lvert\xi\rvert^p\le f(\xi)\le\Gamma(1+\lvert\xi\rvert^q)\] with exponents $1 < p\le q < p+\frac{\min\{2,p\}}{2n}$. Imposing the additional assumption that $f$ resembles the degenerate behavior of the $p$-energy density, we establish a partial $C^{1,\alpha}$-regularity theorem for $F$-minimizers and a similar theorem for minimizers of a relaxed functional.

Our results cover the model case of polyconvex integrands \[f(\xi):=\frac1p \lvert\xi\rvert^p +h(\det\,\xi)\,,\] where $h$ is a smooth convex function with $\frac qn$-growth.

**Download:**