Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

N. Desenzani - I. FragalĂ 

Concentration of Ginzburg-Landau energies with ``supercritical'' growth

created on 29 Jul 2003
modified by fragala on 14 Dec 2006


Published Paper

Inserted: 29 jul 2003
Last Updated: 14 dec 2006

Journal: SIAM Journal of Mathematical Analysis
Volume: 38
Pages: 385-413
Year: 2006


\font\filt=msbm10 \def \rek {\hbox{\filt R} k} \def \renk {\hbox{\filt R} {n+k}}

We study the asymptotic behaviour of energies of Ginzburg-Landau type, for maps from $\renk$ into $\rek$, and when the growth exponent $p$ is strictly larger than $k$. We prove a compactness and $\Gamma$-convergence result, with respect to a suitable topology on the Jacobians, seen as $n$-dimensional currents. The limit energy is defined on the class of $n$-integral boundaries $M$, and its density depends locally on the multiplicity of $M$ through a family of optimal profile constants.

Credits | Cookie policy | HTML 4.0.1 strict | CSS 2.1