L. Ambrosio, E. Bruč, D. Trevisan:
Lusin-type approximation of Sobolev by Lipschitz functions, in Gaussian and $RCD(K,\infty)$ spaces
Adv. Math. 2017
E. Bruč, Q. H. Nguyen:
On the Sobolev space of functions with derivative of logarithmic order
Advances in Nonlinear Analysis (Accepted Paper) 2018
E. Bruč, Q. H. Nguyen:
Sharp regularity estimates for solutions of the continuity equation drifted by Sobolev vector fields
Analysis and PDE (Accepted Paper) p. 18, 2018
E. Bruč, S. Di Marino, F. Stra:
Linear Lipschitz and $C^1$ extension operators through random projections
Journal of Functional Analysis (Accepted Paper) 2018
E. Bruč, Q. H. Nguyen:
Sobolev estimates for solutions of the transport equation and ODE flows associated to non-Lipschitz drifts
Mathematische Annalen (Accepted Paper) 2019
L. Ambrosio, E. Bruč, D. Semola:
Rigidity of the 1-Bakry-Émery inequality and sets of finite perimeter in RCD spaces
Geom. Funct. Anal. Vol. 29, N. 4, p. 949--1001, 2019
G. Antonelli, E. Bruč, D. Semola:
Volume bounds for the quantitative singular strata of non collapsed RCD metric measure spaces
Anal. Geom. Metr. Spaces Vol. 7, N. 1, p. 158--178, 2019
E. Bruč, E. Pasqualetto, D. Semola:
Rectifiability of the reduced boundary for sets of finite perimeter over RCD(K,N) spaces
Journal of the European Mathematical Society (JEMS) (Accepted Paper) 2019
E. Bruč, Q. H. Nguyen, G. Stefani:
A maximal function characterization of absolutely continuous measures and Sobolev functions
Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. Vol. 30, N. 3, p. 599--614, 2019
E. Bruč, D. Semola:
Constancy of the dimension for RCD(K,N) spaces via regularity of Lagrangian flows
Comm. Pure and Applied Math. Vol. 73, p. 1141-1204, 2020
E. Bruč, D. Semola:
Regularity of Lagrangian flows over $RCD^*(K,N)$ spaces
J. Reine Angew. Math. Vol. 765, p. 171203, 2020
E. Bruč:
Structure of non-smooth spaces with Ricci curvature bounded below
(Ph.D. Thesis) 2020
E. Bruč, M. Colombo, C. De Lellis:
Positive solutions of transport equations and classical nonuniqueness of characteristic curves
Arch. Rat. Mech. Anal. (Accepted Paper) 2020
E. Bruč, Q. H. Nguyen:
Advection diffusion equations with Sobolev velocity field
Communications in Mathematical Physics (Accepted Paper) 2020
E. Bruč, A. Naber, D. Semola:
Boundary regularity and stability for spaces with Ricci bounded below
Inventiones mathematicae 2020
E. Bruč, M. Colombo:
Nonuniqueness of solutions to the Euler equations with vorticity in a Lorentz space
(Preprint) 2021
E. Bruč, E. Pasqualetto, D. Semola:
Rectifiability of RCD(K,N) spaces via $\delta$-splitting maps
Annales Fennici Mathematici Vol. 46, N. 1, p. 465-482, 2021
E. Bruč, K. Suzuki:
BV functions and sets of finite Perimeter on Configuration Spaces
(Preprint) 2021
D. Albritton, E. Bruč, M. Colombo, C. De Lellis, V. Giri, M. Janisch, H. Kwon:
Instability and nonuniqueness for the 2d Euler equations in vorticity form, after M. Vishik
(Submitted Paper) 2021
E. Bruč, E. Pasqualetto, D. Semola:
Constancy of the dimension in codimension one and locality of the unit normal on $\mathrm{RCD}(K,N)$ spaces
Ann. Sc. Norm. Super. Pisa Cl. Sci. (Accepted Paper) 2021
E. Bruč, Q. Deng, D. Semola:
Improved regularity estimates for Lagrangian flows on RCD(K,N) spaces
Nonlinear Analysis Vol. 214, 2021
G. Antonelli, E. Bruč, M. Fogagnolo, M. Pozzetta:
On the existence of isoperimetric regions in manifolds with nonnegative Ricci curvature and Euclidean volume growth
Calculus of Variations and Partial Differential Equations (Accepted Paper) 2021
D. Albritton, E. Bruč, M. Colombo:
Non-uniqueness of Leray solutions of the forced Navier-Stokes equations
Annals of Mathematics (Accepted Paper) 2021
E. Bruč, A. Mondino, D. Semola:
The metric measure boundary of spaces with Ricci curvature bounded below
(Preprint) p. 32, 2022
E. Bruč, C. De Lellis:
Anomalous dissipation for the forced 3D Navier-Stokes equations
(Preprint) 2022
D. Albritton, E. Bruč, M. Colombo:
Gluing non-unique Navier-Stokes solutions
(Preprint) 2022
E. Bruč, M. Calzi, G. E. Comi, G. Stefani:
A distributional approach to fractional Sobolev spaces and fractional variation: asymptotics II
C. R. Math. Vol. 360, p. 589-626, 2022